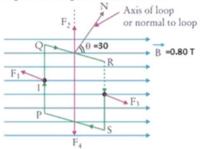
QUES 02:-

. A square coil of side 10 cm consists of 20 turns and carries a current of 12 A. The coil is suspended vertically and the normal to the plane of the coil makes an angle of 30° with the direction of a uniform horizontal magnetic field of magnitude 0.80 T. What is the magnitude of torque experienced by the coil?

Sol. Given:


Length of side of square, L = 10 cm

Number of turns, n = 20

Current through the square coil, I = 12 A

Angle between the normal to the coil and uniform magnetic field, θ = 30°

Magnitude of magnetic field, B = 0.80 T

The torque experienced by the coil in a magnetic field is given by,

 $\tau = n \times B \times I \times A \times \sin(\theta) ...(1)$

Where,

The torque experienced by the coil in a magnetic field is given by,

$$\tau = n \times B \times I \times A \times \sin(\theta) ...(1)$$

Where,

n = number of turns consist by square

B = Strength of magnetic field

I = Current through the coil

A = Area of cross-section of coil

$$A = L^2 = 0.1 \times 0.1 = 0.01 \text{m}^2 \dots (2)$$

 θ = Angle between normal to cross-section of coil and magnetic field

Now by putting the values in equation (1), we get

 τ = 20 \times 0.80T \times 12A \times 0.01m² \times sin30° and the value of sin30°=1/2

 \Rightarrow au= 0.96 Nm

... the magnitude torque experienced by the coil is 0.96 N-m.

Hence the torque experienced by the square coil is 0.96 Nm.